Existence of Solutions for Singular Critical Growth Semilinear Elliptic Equations
نویسندگان
چکیده
منابع مشابه
Singular Solutions for some Semilinear Elliptic Equations
We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...
متن کاملExistence of Positive Weak Solutions with a Prescribed Singular Set of Semilinear Elliptic Equations
In this paper, we consider the problem of the existence of non-negative weak solution u of A u + u P = O i n ~ u = 0 on Of~ n n + 2 ~ / n 1 having a given closed set S as its singular set. We prove that when < p < _ _ and n 2 n 4 + 2 nv/'n-L--1 S is a closed subset of f2, then there are infinite many positive weak solutions with S as their singular set. Applying this method to the conformal sca...
متن کاملExistence of positive solutions of some semilinear elliptic equations with singular coefficients
متن کامل
Weakly and strongly singular solutions of semilinear fractional elliptic equations
If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...
متن کاملMultiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents
where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2001
ISSN: 0022-0396
DOI: 10.1006/jdeq.2000.3999