Existence of Solutions for Singular Critical Growth Semilinear Elliptic Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Existence of Positive Weak Solutions with a Prescribed Singular Set of Semilinear Elliptic Equations

In this paper, we consider the problem of the existence of non-negative weak solution u of A u + u P = O i n ~ u = 0 on Of~ n n + 2 ~ / n 1 having a given closed set S as its singular set. We prove that when < p < _ _ and n 2 n 4 + 2 nv/'n-L--1 S is a closed subset of f2, then there are infinite many positive weak solutions with S as their singular set. Applying this method to the conformal sca...

متن کامل

Weakly and strongly singular solutions of semilinear fractional elliptic equations

If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...

متن کامل

Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents

where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2001

ISSN: 0022-0396

DOI: 10.1006/jdeq.2000.3999